Platinum (II) Compounds With Antitumor Activity Studied by Molecular Mechanics
نویسندگان
چکیده
A SERIES OF PT(LL) COMPLEXES WITH ANTITUMOR PROPERTIES: [1,2-bis(2,6-dichloro-4-hydroxyphenyl)ethylenediamine]PtL(2) (meso-1-PtL(2)) and [erythro-1-(2,6-dichloro-4-hydroxyphenyl)-2-(2-halo-4-hydroxyphenyl)ethylenediamine]PtL(2), [2L=2Cl-,2I-,SO(4) (2)-; halo = F (erythro-8-PtL(2)),halo = Cl (erythro-9-PtL(2))] has been modelled by molecular mechanics (MM). The MM calculations were carried out for different isomers and ligand conformations meso-delta, meso-lambda, d,l-delta, d,I-lambda. The compounds with the lowest MM energies have the same geometries as those obtained by X-ray analysis. The calculated MMX energy orders: meso-1-PtL(2) < erythro-9-PtL(2) < erythro-8-PtL(2) for L=I-, Cl- and SO(4) (2-) are reverse to the known antitumor activity order - the lowest energy complex (the most stable one)is the one with the highest estrogen activity (meso-1-PtL(2)). The type of the leaving group (L) does not alter the energy order, which is in agreement with the biological experiments that show a slight dependence of the estrogen properties on the leaving group type.
منابع مشابه
Pt(II) and Pt(IV) complexes with large hydrophobic ligands: a study of new potential cytostatics
Breast cancer is a major health problem among women in the world. The successful treatment of this disease is limited by the fact that essentially all breast cancers become resistant to chemotherapy. Therefore, there is a need to design new chemotherapeutic agents able not only to target breast cancer but also to display increased efficacy and overall decreased systemic toxicity. Platinum (II) ...
متن کاملDNA modifications by antitumor trans-[PtCl2(E-iminoether)2].
Recent findings that an analogue of clinically ineffective transplatin, trans-[PtCl2(E-iminoether)2], exhibits antitumor activity has helped reevaluation of the empirical structure-antitumor activity relationship generally accepted for platinum(II) complexes. According to this relationship, only the cis geometry of leaving ligands in the bifunctional platinum(II) complexes, should be therapeuti...
متن کاملAntitumor activities and interaction with DNA of oxaliplatin-type platinum complexes with linear or branched alkoxyacetates as leaving groups.
Five oxaliplatin-typed platinum complexes containing trans-1R, 2R-diaminocyclohexane chelating platinum cores, characteristic of linear or branched alkoxycarboxylates as leaving groups, were biologically evaluated. These compounds showed higher antitumor activity, lower toxicity in vivo than cisplatin or oxaliplatin. And the results revealed that the antitumor activity and interaction with DNA ...
متن کاملReversion of structure-activity relationships of antitumor platinum complexes by acetoxime but not hydroxylamine ligands.
The presence of cis-configured exchangeable ligands has long been considered a prerequisite for antitumor activity of platinum complexes, but over the past few years, several examples violating this structure-activity relationship have been recognized. We report here on studies with the geometric isomers of [PtCl2(acetoxime)2], cis-[dichlorobis(acetoxime)platinum(II)] [1 (cis)] and trans-[dichl...
متن کاملAntitumor dinuclear platinum(II) complexes derived from a novel chiral ligand.
A new chiral ligand, 2-(((1R,2R)-2-aminocyclohexyl)amino)acetic acid (HL), was designed and synthesized to prepare a series of novel dinuclear platinum(II) complexes with dicarboxylates or sulfate as bridges. The evaluation of these metal complexes in vitro cytotoxicity against human HCT-116, MCF-7 and HepG-2 cell lines were made. All compounds showed antitumor activity to HCT-116 and MCF-7. Pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Metal-Based Drugs
دوره 5 شماره
صفحات -
تاریخ انتشار 1998